

DIAGNOSTICS – FROM ENGINEERING TO SERVICE

Vehicle Diagnostics -
From Nuisance

to Necessity (Part 2)

For some years now, the vehicle diagnostics is undergoing a process of rapid change. Diagnostics thus
constitutes an individual class of requirements for the vehicle per se; these must be implemented paral-
lel to the intrinsic functions. In the second part of this article the different protocols and programming
interfaces will be shown. Finally, at the example of Softing’s DTS-Monaco an universal engineering tester
will be introduced which is based on D-PDU API, ODX, MCD-3D and OTX.

The communication protocol UDS
Today, the most common protocols in
Europe are ISO 14765 (KWP2000 on
CAN) and, based on the former, ISO
14229 (UDS - Unified Diagnostic Ser-
vices). They share a common transporta-
tion protocol and describe in substance
the same classes of diagnostic services.
However, correlative to its name, the
services for diverse applications, and
correspondent to the earlier protocols
used by the different manufacturers,
were so universalized for UDS that a
migration is relatively easy. In substance,
the following service categories are
described:
 Data reading
 Flash programming
 Failure memory
 ECU routines
 Input/Output control
 Control functions

Additionally, to enable savings in non-
competitive areas, a kind of diagnostics
operating system was engineered
conjointly by OEMs and toolmakers a
number of years ago within the frame-
work of ASAM e.V. (Association for
Standardization of Automation and
Measuring Systems). It is a data-driven
system; the data describe the abilities of
the system in interaction with the
corresponding ECU or vehicle. The
necessity of such an action is easy to
understand when we call to mind that a
door ECU implements completely other
functionalities and units than, for in-
stance, an engine ECU.
Within ASAM e.V., an interface (ASAM
MCD-3D) was defined to enable symbol-
ic access to ECU and vehicle information
and the data description (ASAM MCD-2D
ODX – Open Diagnostic data eXchange)
defined as exchange format between
those involved in the diagnostics pro-

cess. Both were also taken over as ISO
standards. Within the ISO, two further
standards were completed: D-PDU API
as low-level application programming
interface for a simple exchange of
diagnostics interfaces and OTX (Open
Test sequence eXchange format). The
latter facilitates the exchange of diag-
nostics sequences, for instance between
engineering and production.

D-PDU API – the VCI integration layer
The standard describes an API on hexa-
decimal level. The transportation proto-
col is treated completely transparently,
i.e., for the higher application it is
unimportant which protocol was used in
D-PDU API. The data in the form of a
byte stream are overhanded to the
interface together with the addressing
information and parameterized protocol
details (e.g. timings). The implementa-
tion correspondent to the set protocol

follows automatically. ECU replies will
then be likewise reported back as byte
stream with address information of the
answering ECU. More far-reaching
capabilities of the interface - such as
inputs and outputs - that could be
addressed can also be operated with
D-PDU API. The description of interface
capabilities, which deviates from
product to product, is provided as an
XML file. A change of the interface is
thus very easy. For instance a test
program in the engineering department
can be run with a USB interface from
Manufacturer A, and later in a test stand
with a Wi-Fi interface from Manufactur-
er B. In practice, adaptations - albeit
few - are necessary.

ODX – the exchange format for
diagnostics data
The standard describes the data con-
tents of diagnostics communications for
ECUs built into vehicles in an XML file
format. It thus places at disposal the
documentation and the parameteriza-
tion of the test system in a source. The
file can thus be utilized equally from the
specification phase to the use in produc-
tion and after-sales services. Through
the file, a conversion from hexadecimal
to symbolic values takes place. For
instance for an engine ECU there is the
description of a diagnostics service
Reading Revolutions. The corresponding
hexadecimal values to send by way of
D-PDU API can be determined from the
ODX data file. From the answer, the
hexadecimal value can be determined,
which will be converted to "1900 rpm".
Besides this communications infor-
mation, in ODX the protocol-
parameterization, irregularity list of a
vehicle in a universalized form, flash
programming and variant coding data
are also described.
One of the main goals of standardization
was the creation of a standard that is
machine-readable and has long-term
stability (use of XML), that supports the
engineering process and is redundant-
free as much as possible (derivation
concept).
The derivation concept is based on the
idea that a large amount of information
for a designated ECU can be given that
remains constant over the entire life
cycle. This information is described in
the so-called Base Variant. The individu-
al variants of an ECU, described by the
identification string or a software-
version, for example, differ only slightly.

The main part of the information can
thus be inherited from the basis variant
for a variant; in the ECU variant. Only
the Delta then needs to be described.
This can be added, or superfluous
information can be omitted. Moreover,
information defined differently for ECU
variants than for Base Variant can be
overwritten, similar to an object-
oriented programming language. In
addition to these two levels, Base
Variant and ECU Variant, there are two
further levels: the protocol describes
services and parameterizations that are
given through the diagnostics protocol
and functions thus as a "blueprint" for
the ECUs derived from it. The Functional
Group level, finally, enables the descrip-
tion of the functional addressing through
which several ECUs of a logical group can
be addressed over a common address.
The best-known example is OBD func-
tionality, which summarizes all emis-
sions-relevant ECUs and queries them
together.
With OEM, data for a production series
are usually summarized in an ODX data
file. The cumulative amount of data can
be relatively large because the database
includes following information:
 The protocols used in the vehicle
 The information on the ECUs accessi-

ble through functional addressing
 All ECUs used in the vehicle, thus the

optional (gearbox control device for
automatic transmission) as well as the
alternative ECUs (engine control devic-
es for 4 and 6 cylinder diesel and for
gasoline engines)
 The variants throughout the vehicle's

production period

Concrete ODX databases currently reach
the 100 megabyte limit. To simplify data
exchange, the PDX format (packed ODX)
was standardized in addition to ODX.
This involves an indexed ZIP data file.

ASAM MCD-3D – the diagnostics
operating system
The standard describes an API for access
to ECUs with help of ODX data. The
relevant runtime system is usually called
a D Server or a MCVI Server. In the
diagnostics process, it can be used in
many different applications - engineer-
ing, production, after-sales services - and
thus guarantees a consistent usage of
the ODX data. This is especially possible
because reference implementations for
use with various programming languages
have been provided for COM/DCOM,

JAVA and C++ and are available com-
mercially.
Access occurs on a symbolic level, i.e., an
ECU under its name "engine ECU" is
selected and subsequently diagnostics
services can be carried out for this ECU.
An example is the above described
service Reading Revolutions that is
processed by the runtime engine in the
D Server and is sent over D-PDU API to
the ECU. The answer is also processed
over the ODX data and the result allo-
cated to the API as "1900 rpm".
To improve performance especially in
production, in principle as many queries
as wished can be processes parallel to
one another. The limitations mainly
result from the bus load of the (normal-
ly) utilized CAN bus and the capability of
the gateway ECU to distribute queries
sensibly among the different busses.
Currently, ODX data are processed in
real D Servers with the help of a runtime
format. This has, on the one hand,
performance reasons - in a binary
format, the data can be packed and
optimized for access - and, on the other
hand, security reasons. Especially in
after-sales services, the data are basical-
ly unprotected on the service testers and
can be changed and taken by those
interested. Binary data are easy to
encode and to secure against access so
that increased security has clearly been
achieved.

OTX – the interchange format for
diagnostic sequences
The standard describes an interchange
format for diagnostic test sequences.
Here, too - similar to ODX - the machine-
readability and long-term availability
were the main requirements. The idea
behind the standard is to create a
possibility to give a formal description of
basic sequences between test system
and ECU as early as during the specifica-
tion phase. These sequences can be
further used and specialized during the
process: it is no longer necessary to start
from scratch and to copy a basic se-
quence from a written specification.
Through machine-readability, a graphical
representation of sequences will also be
supported, for instance as flowchart,
which offers engineers in engineering,
verification, production and after-sales
services a universal basis for their
discussions.
The standard OTX is subdivided into a
number of areas: The core comprises a
programming language with the typical

Figure 3: Softing’s DTS-Monaco is an example of an engineering tester. Any protocol can
be used, if there are a D-PDU API interface and suitable ODX data.

elements: variables, solutions/ instruc-
tions and operations (grinding, bifurca-
tion, benchmarking, …). It is not related
to diagnostics and can basically be used
for a variety of tasks. Standardized
libraries are available for special tasks. In
addition to diagnostics communication
(connection to the D Server), especially
string operation, size handling, presenta-
tion functions (HMI) and internationali-
zation in order to be able to offer ver-
sions of sequences in different lan-
guages for the different markets. The
standardized libraries use a general add-
on mechanism. This can also be used for
non-standardized add-ons, whereby any
test system in the sequence is integra-
ble. Typical examples are HiL systems,
simulations and measuring.
OTX supports the engineering process
through various mechanisms. First, it
allows a mere specification view for
early process phases. Here, the idea of
the sequence is described, without
furnishing a concrete implementation of
the sequence. Thus, it can, for example,
already sketch the communication with
an ECU without real ODX-files in which
real diagnostics services are described. A
loadable OTX-sequence is not thereby
created. This will be made up for later in
the implementation of sequences. To
support the variant diversity similar to
ODX without having to release a se-
quence completely every time, special
mechanisms were also realized.
In contrast to ODX, for OTX there is no
standardized API for a state machine. As
interchange format, the tool production
can process the format in an interpreter,
compile it in a machine format or to
import it into an already existing test
system and process it there further.

Engineering tester—an example
DTS-Monaco is an example for an engi-
neering tester. It was based on the
standards D-PDU API, ODX, MCD-3D and
OTX and thus has a command of all
relevant standards (figure 3). DTS-
Monaco consists of only a few main
components and can be expanded for
specific uses: the framework, the HMI
controls and the runtimes for the stand-
ards OTX and ODX. ODX is processed
through the D Server DTS-COS. It places
at disposal the standardized API comply-
ing with ASAM MCD-3D, offers in addi-
tion, though, several other extensions
that simplify the use in test automations
and enable functions in the engineering
tester that go beyond the standard. For
OTX a runtime interpreter was integrat-

ed. The framework provides the basis
functionalities that are necessary for
diagnostics. Besides the link to the
runtime systems, this is especially the
tool configuration, which can be saved
and reloaded. The role administration is
also integrated in the framework. Mona-
co supports the roles “administrator”
and “user”. The administrator can
author configurations, save and then
provide them to the user. This pertains
to the surface configurations as well as
to OTX sequences. These can be provid-
ed by the administrator in the tool and
adapted. The user can only load these
pre-configurations in the tool and use
them. Changes are only partially possi-
ble. This ensures that every user utilizes
only those functions on the vehicle for
which he/she has been trained.
HMI controls run within the framework
as components. HMI controls translate
the communications analysis, provided
through the D Server and the OTX
runtime, into the user view, expected by
the user for his/her specific tasks. This
can be a fault memory list or a measur-
ing instrument. Every HMI control brings
its own configuration. There are both
common and specific properties. With
the failure memory, this would be
whether status information should be
shown, for example, and with the
measuring instrument if it should be
shown as pointer instrument or as bar
graph.
Implementation as components is a
simple possibility to discuss additional
uses with a client, to implement and to
install later or in a specific setup. The
advantage is that this component can be
independently tested and the system

integrity is not influenced at all. These
add-ons are especially important when a
link to a logistics system is required. This
is, of course, user-specific, thus can be
easily implemented in a product but
should not be visible to every user and
thus must be installed independently.

Data supply
ODX and OTX runtime environments are
the basis for DTS-Monaco. The most
important data in the system are thus
OTX and ODX data. Access to ODX data
takes place - whether through HMI
controls or OTX - via names (Reading
Revolutions). These ODX names must be
administered with the configurations
and contiguously with the OTX sequenc-
es. This occurs through projects.
The OTX data are processed directly in
XML format. This simplifies handling
because here data either have been
taken from a specification phase and
adapted or have been directly authored
for the applications of the engineering
tester. Here, data conversion would
only be cumbersome in operations. For
ODX data, this does not follow. These
are authored in a small area of applica-
tions; in the majority of applications,
though, they are subject to version
administration and should only be
altered under regulated guidelines.
Here, therefore, data protection is
advisable. In DTS-Monaco, a conversion
takes place in a format that is encoded
as well as password-protected. It cannot
be opened even with a database editor if
the password is not known. The data
format supports various administrator
processes: not only can data be summa-
rized in a data file in an ODX data-

base - typically binary data for a produc-
tion series - but also each ECU with its
variants can be saved in its own data file.
Both procedures have advantages and
disadvantages. Apart from these data,
further data types can be administered
in a project, for example simulations
datasets, the CAN matrix or filter da-
tasets.

Applications with HMI controls
One of the central HMI controls is the
Diagnostic Services Control. It covers a
large extent of the applications: data
verification and analysis. This occurs
through a three-part window: in the first
part, the diagnostics services of the
database can be "browsed" in a tree,
sorted according to ECUs and to func-
tional classes. The selected diagnostics
service can be parameterized in the
second part. This can be done symboli-
cally by setting the request parameter
"variable" to "revolutions” or directly by
changing the hexadecimal values in the
byte stream. This way, "not OK" values,
which are not attainable symbolically,
can be set for test purposes. In the third
part of the window, results are present-
ed, whereby it is configurable whether
the results only are presented or also
the structure of the results. For quick
access, buttons can additional be con-
figured so that access to the diagnostics
services does not need a lengthy search
with the browser. Two different meth-
ods are available to represent measured
values: blocks of measurements can be
textually represented in a list, which
allows a very compact overview of the
values. The repetition rate is adjustable,
and access only with manual demand is
also possible in order to keep the bus
load low. Instruments can also be con-
figured; the variability of these repre-
sentation possibilities is considerable.
Incidentally, such instruments can also
be used with knobs or switches to alter
values in the ECU. Representing a num-
ber of measurement values over time is
additionally possible.
For flash programming, an individual
HMI control is provided. This covers two
applications: it can be used for engineer-
ing the function flash programming as
well as for simple executions, for in-
stance to update program versions or to
swap datasets. In the former case, it is
possible to put individual partial func-
tions in the ECU into operation using a
five-step process: initialization, compati-
bility check, validation and finalization.
Thereby the single test runs are distinct-

ly faster. In the latter case, swapping
datasets, the data package to be pro-
grammed is only chosen and then the
ECU is programmed at the touch of a
button. In both cases, the programming
progress is shown with a progress
indicator.
Handling failure memory and identifica-
tion is summarized in an HMI control
called Quicktest. The Quicktest is fre-
quently used especially in the prototype
workshop. The ECU identifications are
read and then the failure memories of all
recognized ECUs. Users themselves can
configure whether the surrounding
conditions are also retrieved. The chal-
lenge is that the pilot plant frequently
programs unreleased software versions
in the ECUs so that variants cannot be
recognized. Just as frequently, the valid
ODX data are not yet available; in this
case, too, no variants can be recognized
and the diagnostics must take place
using the basic variants. To be able to
execute the common application Quick
test with high performance, all ECUs
possible should be addressed in parallel.
This enables performance gains of factor
4 in practice. However, all ECUs cannot
be addressed in parallel. First, the
alternative ECUs must be recognized
since only the ECU for the 4-cylinder
diesel motor or for the 6-cylinder gaso-
line engine, for example, could be
present. It is just as important to bear in
mind, however, that - corresponding to
the bus architecture - ECUs behind
gateways often can be addressed only if
the gateway itself has been addressed
already. ECUs which need to be ad-
dressed sequentially have to be config-
ured by a specialist.
Furthermore, numerous other views of
diagnostics information are available
that will not be discussed here.

Test Documentation
With DTS-Monaco, there are various
available possibilities to document the
tests performed. The symbolic trace
records all send and receive information
that is exchanged between tester and
ECU(s). Thereby, values interpreted via
ODX data are saved on the one hand; on
the other, though, also the data sent and
received on the hexadecimal level. Thus,
a complete test is also subsequently
representable and can be documented.
The file is delivered as an XML data set
so that conversions into other formats
or filtering to necessary representations
for particular customer processes are
unproblematic.

Parallel to this, on the bus-
communication level, a trace can be
written down. This trace, usually a CAN
trace, also allows abnormalities in the
protocol to be recognized and be docu-
mented.

Conclusion
Standards have not only gained ac-
ceptance in the area of diagnostics; with
increasing depths of application, there
are even broader areas that are being
standardized. Diagnostics protocols
were the beginning from which produc-
ers soon no longer wanted to pay for
implementing their special solutions
with the increasing number of ECUs.
Data formats and APIs to integrate
diagnostic solutions in the most different
test systems were a logical consequence.
Independent of the fact that single-
source is basically suitable to reduce
costs; quality is also increased through
the wide use of relevant standards. That
is to say, as soon as diagnostics is easily
integrated, nothing is to be said against
also introducing its powerful methods in
many areas and thus to reach a much
larger test width and depth.
Quality, however, is the central argu-
ment for customer retention. Seeing
how nervous producers react to recalls,
it is clear that the message has been
understood. Seeing how meticulously
customers study emergency road service
(breakdown) statistics and enlist them in
their purchase decisions, it is clear why.
When a car has a defect in early stages
despite all efforts, though, a customer
must be able to drive away from the
garage after a stay as short as possible,
satisfied. Diagnostics is the key to this.
The savings is very apparent if the costs
for special testing mechanisms in
engineering and production would be
calculated. Naturally, special sensors and
actuators for testing purposes can be
built to carry out tests. Naturally, addi-
tional tools can be held ready for these
tests. Faster and cheaper - and frequent-
ly sufficiently good - it is possible with
the diagnostics testers available anyway
over the installed mechanisms in the
vehicle. Consequently, it is done exactly
that way.

Markus Steffelbauer is head
of product management at
Softing Automotive Electron-
ics. He takes responsibility
for development and
marketing of all hardware
and software products and is
member of several interna-
tional committees.

	Engineering Area
	Production
	After-Sales Service
	On-Board Diagnostics (OBD)
	Requirements for Diagnostics Systems
	Requirements for engineering testers
	Variant Coding
	Residual Bus Simulation
	Which of the important standards must be observed?
	The communication protocol UDS
	D-PDU API – the VCI integration layer
	ODX – the exchange format for diagnostics data
	ASAM MCD-3D – the diagnostics operating system
	OTX – the interchange format for diagnostic sequences
	Engineering tester—an example
	Data supply
	Applications with HMI controls
	Test Documentation
	Conclusion

